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Abstract—This paper presents OpenRatSLAM2, a new ver-
sion of OpenRatSLAM—a bioinspired SLAM framework based
on computational models of the rodent hippocampus. Open-
RatSLAM2 delivers low-computation-cost visual-inertial based
SLAM, suitable for GPS-denied environments. Our contributions
include a ROS2-based architecture, experimental results on new
waterway datasets, and insights into system parameter tuning.
This work represents the first known application of RatSLAM
on USVs. The estimated trajectory was compared with ground
truth data using the Hausdorff distance. The results show that the
algorithm can generate a semimetric map with an error margin
acceptable for most robotic applications.

Index Terms—SLAM, RatSLAM, Bioinspired Navigation, USV,
ROS 2, Visual-Inertial SLAM

I. INTRODUCTION

The increasing use of unmanned surface vehicles (USVs)
for scientific, military, and commercial purposes requires the
development of robust navigation systems [1]. Common ap-
plications include oceanographic data collection, oil and gas
exploration, environmental surveys, mine countermeasures,
and surveillance [2], [3]. To autonomously perform such tasks,
a mobile robot must be able to localize itself within its
environment [4]. Common approaches include combining GPS
with an inertial measurement unit (IMU) and Kalman filtering
algorithms for state estimation in USVs [5]– [6]. However,
these methods fail in GPS-denied environments where satellite
signals are obstructed [7]. Moreover, GPS signals are vulnera-
ble to various disruptions and cyberattacks, including jamming
and spoofing [8]. To address these limitations, Simultaneous
Localization and Mapping (SLAM) is an alternative that
enables a vehicle to build a map of its surroundings while
estimating its position relative to that map. Many existing
SLAM implementations rely on computationally intensive
sensors, such as LiDAR or depth cameras. These sensors
often require high processing and storage demands, making
them less suitable for real-time applications on resource-
constrained platforms [9]. Motivated by recent advances in
neuroscience, several brain-inspired SLAM systems have been
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proposed [10]. A pioneering work is the RatSLAM frame-
work, a biologically inspired SLAM algorithm based on
computational models of the rodent hippocampus. RatSLAM
employs a Continuous Attractor Neural Network (CANN) to
construct a cognitive map of an environment using only a low-
resolution monocular camera [11]. Compared to probabilistic
SLAM approaches, RatSLAM offers reduced computational
complexity and efficient memory usage and it is well-suited for
both indoor and large-scale outdoor mapping. In recent years,
several RatSLAM-based variants have been proposed [12].
For instance, [13] introduced a MATLAB-based RatSLAM
implementation in a rat robot, demonstrating its capability
to learn spatial layouts. However, the system’s performance
was too slow for real-time operation in large environments.
Another approach, OpenRatSLAM, was proposed as an open-
source RatSLAM implementation based on the Robot Operat-
ing System (ROS) [14]. This version benefits from ROS’s node
parallelization and modular integration with diverse robotic
architectures [12]. The emergence of ROS 2 as the dominant
middleware for new robotic systems has created integration
challenges, as OpenRatSLAM was primarily developed for
ROS 1. In this context, xRatSLAM was developed as an
extensible, parallel, open-source framework developed as a
C++ library to facilitate the development and testing of
RatSLAM algorithm variants [12]. While most applications
targeted ground robots, RatSLAM-inspired algorithms have
also been explored in other domains. One aerial application,
NeuroSLAM, is a neuro-inspired SLAM system with four
degrees of freedom (4DoF), based on computational models
of 3D grid cells and multilayered head direction cells. It
integrates visual and self-motion cues through a dedicated vi-
sion system [15]. In underwater environments, two RatSLAM-
based systems have been developed: DolphinSLAM [16], a
3D variant, and a more recent system that implements Pose
Cells using Spiking Neural Networks (SNNs) [17]. Both
were developed using ROS 1 distributions, which are now
deprecated and unsupported. In summary, the contributions of
this work are as follows:

• A new version of OpenRatSLAM, implemented using
ROS 2 Rolling, referred to as OpenRatSLAM2. This
version benefits from ROS 2’s advantages, including im-
proved maintainability and easier integration with modern
tools. Also, the communication middleware is more ro-
bust than the old ROS 1, providing streamlined transition
from simulation to physical robot deployment;



• To the best of our knowledge, this is the first application
of RatSLAM to an USV;

• A visual-inertial dataset collected using a USV for eval-
uating SLAM performance in aquatic environments.

II. PROBLEM FORMULATION

RatSLAM is an appearance-based system introduced in
[18] that relies on visual similarity between images captured
at discrete locations in the environment. It is a mapping
and localization algorithm inspired by the neural processes
associated with spatial navigation in the hippocampus and
entorhinal cortex of rodents [19]. Figure 1 illustrates the
OpenRatSLAM architecture, which builds upon the original
RatSLAM framework. The system consists of three main
modules: Local View Cells, Pose Cells, and the Experience
Map.

The Local View Cells are visual templates that represent
unique scenes learned in the environment. The Pose Cells
Network is the core of the algorithm and it models the behavior
of three types of cells found in the rodent brain, strongly linked
to spatial location: place, head and grid cells.

Place cells fire at their peak when the rodent is in a specific
location, with excitation decreasing as the animal moves away
from that location [11]. Head direction cells activate only
when the animal is oriented toward specific global directions
[20], [21].

The activity packet in the pose cell network encodes the be-
lief about the current pose, denoted by the vector

[
x y θ

]T
.

Each local view cell is anchored, at the time of its creation,
to the centroid of an active place cell packet. This association
is indicated by the brown lines in Fig. 1.

The Experience Map is a topological graph-based repre-
sentation that integrates information from pose cells and local
view cells. Each node, or experience, stores the estimated robot
pose, derived from the centroid of the activation packet, and
the corresponding local view ID, both captured at the time of
experience creation. These associations are illustrated by the
blue lines in Fig. 1.

Over time, odometry-based dead reckoning accumulates
drift. For instance, a gray node in the experience map may
represent the estimated pose based on odometry alone, while
a matching visual template indicates the scene corresponds
to a previously observed location (e.g., experience zero).
This triggers the loop closure process, which is described in
subsection II-C.

A. Pose Cells Network

Pose Cells Network (PCN) is a continuous attractor network
(CAN) implemented as a three-dimensional structure of cells
with weighted excitatory and inhibitory connections [22]. It
exhibits characteristics similar to those of navigation-related
neurons found in several mammalian brains, particularly grid
cells. Cells within the network are locally linked via excitatory
connections that wrap around all six faces of the network.
Additionally, each cell inhibits all other cells in the network,
which contribute to the formation of localized activity packets.
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Fig. 1: RatSLAM main modules.

[14]. Unlike most artificial neural networks, the CAN model
does not update its state by adjusting connection weights.
Instead, it is updated by varying the activity levels of its neural
units [22].

1) Attractor Dynamics: The intrinsic attractor dynamics of
the network ensure that, in the absence of external input, the
activity converges over several iterations to a single localized
packet. For each pose cell, local excitation is achieved through
a three-dimensional Gaussian distribution of weighted connec-
tions. This process is visually represented by the red arrows in
Fig. 1. In the OpenRatSLAM implementation, the excitatory
weight matrix ε is given by Eq. (1)

εa,b,c =
1

σε
√
2π

e

(
−(a−xc)

2(b−yc)
2(c−θc)

2

2σ2
ε

)
, (1)

where a, b, and c represent the distances between cells in x′,
y′ and θ′ coordinates, respectively; σε denotes the variance of
the excitation kernel; and

[
xc yc θc

]T
is the center of the

activity distribution.
The resulting change in the activity of a pose cell due to

local excitation is given by Eq. (2)

∆Px′,y′,θ′ =

nx′−1∑
i=0

ny′−1∑
j=0

nθ′−1∑
k=0

Pi,j,kεa,b,c, (2)

where nx′ , ny′ e nθ′ denote the dimensions of the pose
cell matrix in units of cells. Equation 2 represents a circular
convolution of two three-dimensional matrices.

The following steps are local and global inhibition. Each
cell inhibits nearby cells using an inhibitory kernel ψa,b,c,
which is a broader version the excitation kernel. The variances
for inhibition are larger than for excitation, creating the so-
called Mexican-hat function. Furthermore, a constant global
inhibition φ is uniformly applied across all cells. The total
inhibitory update is described by Eq. (3)

∆Px′,y′,θ′ = −
nx′−1∑
i=0

ny′−1∑
j=0

nθ′−1∑
k=0

Pi,j,kψa,b,c − φ, (3)

where φ is the global inhibition constant. After inhibition, all
pose cells values P are clipped to be nonnegative and then



normalized so that the total energy in the network sums to
one [11].

2) Path Integration: In the RatSLAM system, path in-
tegration consists of shifting the activity packet across the
pose cell network based on odometry information. Although
this approach presents lower biological fidelity compared to
computing transitions through weighted connections, it is
computationally efficient and avoids scalability issues. Un-
like probabilistic SLAM approaches, this mechanism does
not increase uncertainty over time. Odometry data used for
path integration can be extracted from image-based motion
estimation or obtained from other odometric sources. The
accumulated error in the path integration process is reduced by
the activation of local view cells, which inject energy into the
pose cell network when familiar scenes are detected, thereby
enabling loop closure and correction of the robot’s estimated
pose.

B. Local View Cells

Local view cells consist of an expandable array of units,
denoted by V , where each cell encodes a distinct visual scene.
A given cell becomes active when the robot perceives its
corresponding scene. While there are no direct connections
between local view cells themselves, connections are formed
between local view cells and pose cells upon creation of a new
visual template. When a new local view cell Vi is created,
an excitatory link βi is learned between this unit and the
centroid of the currently dominant activity packet in the pose
cell network. If the same visual scene is encountered again,
the associated local view cell injects activity into the pose cells
through this excitatory link. This process is described by Eq.
(4)

∆Px′,y′,θ′ = δ
∑
i

βi,x′,y′,θ′Vi. (4)

where δ is a constant that determines the influence of visual
cues on the correction of robot’s pose estimate. A saturation
mechanism is implemented to limit the duration for which a
visual template can inject activity, preventing erroneous relo-
cations in the absence of movement. Successful relocalization
requires the robot to perceive a familiar sequence of images,
resulting in a series of energy injections into the same region
of the pose cell network. The visual energy injection process
is critical, and its performance is sensitive to parameter tuning
as provided in Section IV.

C. Experience Map

Although pose cells represent a finite area, the wrapping of
the network edges allows an infinite area to be mapped. As a
result, a single pose cell may correspond to multiple physical
locations. To solve potential ambiguities, the experience map
is a semi-metric topological map [22], that estimates a unique
pose of the robot by combining information from pose cells,
local view cells and odometry. The experience map consists
of a graph, where each node (referred to as experience) is
defined as a 3-tuple ei =

{
P i, V i,pi

}
, where P i and V i are

the pose cell and local view activity states, respectively, at

the time of experience creation. The term pi represents the
estimated pose of the robot within the coordinate space of the
experience map.

1) Experience Creation: The robot’s current pose and local
view information are compared against all previously stored
experiences through a matching score metric Si provided by
Eq. (5)

Si = µp

∣∣P i − P
∣∣+ µυ

∣∣V i − V
∣∣ . (5)

µp and µυ are weighting factors for the pose and local view
components, respectively. If the minimum score across all
stored experiences satisfies min(S) ≥ Smax, indicating that
the current state is sufficiently distinct, a new experience is
created.When a new experience ej is added to the graph, a
transition lij is also established between ej and the previously
active experience ei. This transition is represented in Eq. (6)

lij =
{
∆pij ,∆tij

}
, (6)

where ∆pij denotes the relative pose change computed from
odometry, and ∆tij is the elapsed time since the last experi-
ence. The new experience ej is given by Eq. (7)

ej =
{
P j , V j ,pi +∆pij

}
. (7)

Equation (7) T is valid only at the time of experience
creation. The value of pj may subsequently be adjusted during
loop closure.

2) Loop Closure: If any of the stored experience matching
scores fall below the threshold Smax, the experience with
the lowest score is chosen as the active experience. This
experience represents the best estimate of the robot’s current
location, thereby triggering the loop closure process. At this
point, the relative pose between the two matched experiences
typically differs from the pose change predicted by odometry.
In this case, an experience map relaxation procedure is ap-
plied. This process minimizes the error between the observed
transitions and the absolute poses of experiences within the
map. The pose of all experiences are updated using Eq. (8)

∆pi = α

Nf∑
j=1

(
pj − pi −∆pij

)
+

Nt∑
k=1

(
pk − pi −∆pki

) ,
(8)

where α is a correction rate constant, Nf is the number of links
from experience ei to others, and Nt is the number of links
from other experiences to ei. A value of α = 0.5 ensures a
balance between the velocity of the correction and the stability
of the map, while higher values of α may cause instability
[23].

III. SYSTEM OVERVIEW

In this work, we employed the same data formats used
in the first version of OpenRatSLAM. Input data, such as
odometric readings and camera images, are read from a ROS
bag. Figure 2 shows the general workflow. Data collection
was performed by the SeaRobotics Surveyor (Fig. 2-(i)), and
initially stored in Hierarchical Data Format version (HDF5).
Next, the HDF5 data file was converted to the ROS 2 bag



Fig. 2: OpenRatSLAM2 workflow: (i) Data acquisition while the USV travels a predetermined trajectory; (ii) Data preprocessing
consists of adapting the input format to the OpenRatSLAM2 framework; (iii) A ROS2 bag file containing the data from the
sensors of interest; (iv) RatSLAM main modules, where input data are processed to generate the experience map; (v) Scripts
for viewing and analyzing results.

Fig. 3: ROS Computational Graph.

format to be processed by the OpenRatSLAM2 framework.
During OpenRatSLAM2 running, the topic data are recorded
into a separate ROS bag file. Output data, such as the gen-
erated map, are extracted and visualized using a set of post-
processing scripts.

1

Figure 2 shows the three sensors used to compose the
datasets: compass, camera, and GPS. The ISA500 compass
includes an integrated Attitude and Heading Reference System
(AHRS), with three MEMS-based gyroscopes, accelerometers,
and magnetometers and provides the odometric readings. The
onboard camera captures frontal-view images, while the GPS
is used to generate the ground truth.

OpenRatSLAM2 follows the same architectural design as
OpenRatSLAM [14], which consists of four ROS 2 nodes, as
depicted in Fig. 3:

• Visual Odometry: provides an odometry estimate based
on image changes. This node not used in this work, as
the dataset includes an alternative odometric source;

• Local View Cells: verifies whether the current view cor-
responds to a previously encountered scene;

• Pose Cell Network: the core node of the system; manages
the activity packet to estimate pose based on odometric
and local view connections. It also handles the experience
map nodes and links creation.

• Experience Map: builds experience graph, performs graph
relaxation, and handles path planning.

1https://github.com/OpenRatSLAM2/ratslam

IV. OPENRATSLAM2 PARAMETERS

OpenRatSLAM’s performance depends on a large set of
parameters. To support reproducibility and facilitate system
tuning, this section presents the influence of the main pa-
rameters and the expected impact of modifying them. All
parameters and their default values can be seen on the project
page

2
.

Regarding the Local View module’s parameters, image crop
parameters define regions of the image relevant for local-
ization. In this dataset, for example, the water surface can
be excluded. The template size parameters define the spatial
resolution of the template. Small values may fail to capture
relevant features, while large values increase memory and
computation and may introduce over-sensitivity.

Normalization parameters mitigate the effects of lighting
variation. For example, vt normalization ≈ 1 maintains the
original contrast, adjusting only the brightness. High values
(> 2), on the other hand, can cause saturation.

Among the comparison parameters, vt match threshold is
critical: lower values (0.01–0.03) reduce false positives and
increase the number of templates created—suitable for repet-
itive environments. Higher values (0.05-0.1) tolerate greater
variation, but risk confusing different locations.

Most pose cell parameters do not require frequent tuning.
pc dim x sets the spatial resolution of the pose cell network.
A larger network improves distinctiveness and loop closure
accuracy at the cost of increased computation. pc cell x size
should match the robot’s speed profile—ideally, the energy
packet moves one cell per iteration.

For static environments or slow-moving robots,
vt active decay can be increased to 1.5. In dynamic
environments or at higher speeds, a value between 0.3 and 0.8
is recommended. The parameter pc vt inject energy regulates
how strongly visual input corrects pose estimates—0.1–0.2
is typical for stable conditions, while 0.05–0.1 may be better
suited for dynamic scenarios. The exp delta pc threshold
affects the density of the topological map. Lower values
(< 1.5) generate denser, more detailed maps at the cost of

2https://openratslam2.github.io/ratslam.github.io/

https://github.com/OpenRatSLAM2/ratslam
https://openratslam2.github.io/ratslam.github.io/


TABLE I: Parameter Values.

Local View Pose Cells
image crop x min = 40 pc dim xy = 18
image crop x max = 600 pc cell x size = 1
image crop y max = 150 pc vt inject energy = 0.2
image crop y min = 300 exp delta pc threshold = 2.0
template x size = 60 vt active decay = 1.0
template y size = 20 pc vt restore = 0.05
vt shift match = 25
vt step match = 5 Experience Map
vt match threshold = 0.073 exp loops = 50
vt normalisation = 0 exp initial em deg = 180
vt patch normalise = 2 exp correction = 0.5
vt panoramic = 0

memory. Higher values (> 3.0) reduce node creation and
computational load, but may reduce environmental resolution.
The parameter exp loops defines how many iterations of the
relaxation algorithm are executed per system update.

V. EXPERIMENTAL RESULTS

This section presents the results obtained from the ex-
periment conducted using the Green Library Lake dataset,
collected at Florida International University (FIU). The dataset
includes LiDAR data, odometry, frontal camera images, GPS,
and water quality data, all sampled at 1 Hz. The images and
odometry data were re-encoded as CompressedImage and
Odometry messages, respectively, and stored in a ROS 2 bag
file. During preprocessing, images were resized to 640x480
pixels. To ensure accurate synchronization across data streams,
the original timestamps were preserved. Table I summarizes
the parameter values used in the experiment.

Figure 4 (a) shows the trajectory followed by the USV,
which consists of approximately 900 meters over a duration of
about 16 min. Figure 4 (b) presents sample frames captured
by the onboard camera. (Figs. 5a) shows the evolution of
the experience map over time. At first, the USV had already
completed two full outer loops and one inner loop in the upper
region of the lake. At this stage, no loop closure had yet
occurred, and odometry drift is visible. In the second figure,
a loop closure with the starting region is detected, triggering
map convergence toward the ground truth. With subsequent

(a) (b)

90
 m

90 m

Fig. 4: (a) FIU MMC Lake Dataset and (b) frames examples
from frontal camera.

loop closures, the map becomes increasingly stable, requiring
only minor refinements.
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Fig. 5: (a) Experience map evolution over time and (b) final
map.

The final map is shown in Figure 5b where the estimated
trajectory (orange) closely aligns with the ground truth (blue).
A complete visualization of the trajectory evolution is available
in the accompanying video

3
. The accuracy of the estimated

trajectory was evaluated using the Hausdorff distance. Given
a metric space (X, d) and two non-empty subsets A,B ⊆ X ,
the Hausdorff distance dH(A,B) is defined as Eq. (9):

dH(A,B) = max

(
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

)
. (9)

This metric computes the maximum distance from any point
in one set to the nearest point in the other set [24]. The
Hausdorff distance is particularly suitable for this case when
compared to more traditional metrics such as Mean Abso-
lute Error (MAE) or Mean Squared Error (MSE), especially
because the estimated trajectory p′ and the ground truth g
do not necessarily contain the same number of points. This
mismatch arises because the number of experience nodes is
automatically determined by the algorithm.

For the evaluated 900-meter trajectory, the Hausdorff dis-
tance was dH(g, p′) ≈ 8.35. This is a reasonable value
if compared to the accuracy of the onboard GPS receiver
(specifically, the Garmin 19X HVS) which offers an accuracy
of 5–10 meters using GPS alone, and up to 3 meters with Wide
Area Augmentation System (WAAS). Figure 6 illustrates
the activation timeline of experiences and visual templates
throughout the experiment. The upper blue line (bounding
line) indicates the creation of new experience nodes, while
the red line shows the creation of visual templates. Short
segments below these lines indicate successful re-recognition
of previously visited locations. Loop closures are marked by
the start and end points of these segments.

3https://openratslam2.github.io/ratslam.github.io/

https://openratslam2.github.io/ratslam.github.io/
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VI. CONCLUSION

This work introduced OpenRatSLAM2, a new ROS2-based
version of OpenRatSLAM, designed as a modular framework
for online and offline operation. Unlike navigation systems
that rely on probabilistic methods, laser range sensors, or
occupancy maps, RatSLAM works with only a low-resolution
monocular camera. It also supports integration of odometric
data from additional sensors, such as encoders and IMUs. To
the best of our knowledge, this is the first work detailing
the application of RatSLAM to an unmanned surface vehicle.
Field experiments demonstrated that this approach can local-
ize an USV in GPS-denied scenarios with an error margin
acceptable for robotic applications. Furthermore, we analyzed
the influence of algorithm parameterization, identified the most
critical ones for performance, and provided recommended
default values. Future work will explore autonomous or super-
vised optimization of OpenRatSLAM2’s local view and pose
cell parameters, using predefined dataset segments with known
loop closures.
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